NinjaDoH: A Censorship-Resistant Moving Target
DoH Server Using Hyperscalers and IPNS

Scott Seidenberger”, Marc Beret*, Raveen WijewickramaT, Murtuza Jadliwala®, and Anindya Maiti*
*University of Oklahoma, Norman, OK, USA
TUniversity of Texas at San Antonio, San Antonio, TX, USA
Email: seidenberger@ou.edu, marc.beret@ou.edu, raveen.wijewickrama@utsa.edu, murtuza.jadliwala@utsa.edu, am@ou.edu

Abstract—We introduce NinjaDoH, a novel DNS over HTTPS
(DoH) protocol that leverages the InterPlanetary Name System
(IPNS), along with public cloud infrastructure, to create a
censorship-resistant moving target DoH service. NinjaDoH is
specifically designed to evade traditional censorship methods that
involve blocking DoH servers by IP addresses or domains by
continually altering the server’s network identifiers, significantly
increasing the complexity of effectively censoring NinjaDoH traffic
without disruption of other web trafficc. We also present an
analysis that quantifies the DNS query latency and financial
costs of running our implementation of this protocol as a service.
Further tests assess the ability of NinjaDoH to elude detection
mechanisms, including both commercial firewall products and
advanced machine learning-based detection systems. The results
broadly support NinjaDoH’s efficacy as a robust, moving target
DNS solution that can ensure continuous and secure internet
access in environments with heavy DNS-based censorship.

Index Terms—DoH, censorship resistance, DNS privacy, moving
target defense.

I. INTRODUCTION

The Domain Name System (DNS) is a crucial component of
the Internet, responsible for translating human-readable domain
names into machine-readable IP addresses. However, traditional
DNS queries are sent in plaintext, making them vulnerable to
various exploits by governments and organizations that enforce
censorship through DNS-based firewalls. DNS-based firewalls
have been used to enforce censorship against platforms such as
Wikipedia, TikTok, and political websites in several regions [1[|—
[4]. Moreover, state-of-the-art web censorship circumvention
proposals such as NetShuffle [5] require access to an uncensored
DNS service, further necessitating a censorship resistant DNS
protocol.

DNS over TLS (DoT) [6], DNS over QUIC (DoQ) [7], and
DNS over HTTPS (DoH) [[8] encrypt DNS traffic, protecting
it from eavesdropping, but DoT and DoQ operate on distinct
ports (853/tcp and 853/udp, respectively), which make them
easy to identify and block. In contrast, DoH integrates DNS
requests with regular HTTPS traffic on port 443/tcp, the same
port utilized for most encrypted web traffic. This makes it

‘Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2026
27 February 2026, San Diego, CA, USA

ISBN 978-1-970672-06-0

https://dx.doi.org/10.14722/madweb.2026.23006

www.ndss-symposium.org

much harder for firewalls to block DoH without disrupting
regular internet activities, as DoH is effectively masked within
standard HTTPS traffic. As a result, DoH has the advantage
of bypassing firewalls that block all outgoing DNS queries on
port 53 or 853.

Efforts to counteract DoH’s ability to evade DNS-based
censorship have led to several research initiatives focusing
on specifically detecting and blocking DoH traffic. Early
approaches relied primarily on list-based methods, which
are limited due to the increasing ease of self-hosting DoH
servers (9], [10] on cloud infrastructure with vast IP address
spaces that can make an infrequently updated blocklist inef-
fective [5]], [11]. Entirely blocking outbound HTTPS traffic
to hyperscalers such as AWS [12], Google Cloud [13]], or
Azure [[14] is impractical for most censors as these hyperscalers
also host numerous essential web services. More sophisticated,
machine learning (ML)-based techniques [[15]—[18] have been
developed which emphasizes the necessity for more censorship-
resistant DNS solutions.

In this paper, we introduce NinjaDoH, a novel DoH
client-server protocol designed to be censorship-resistant. The
NinjaDoH protocol employs a moving target defense by
dynamically changing the server IP address through the use
of public cloud infrastructure, and securely sharing the latest
server IP address with the client(s). NinjaDoH’s client-side
software continuously updates the operating system to use the
most recent server IP address for DoH queries. To mitigate
propagation delays in sharing of new IP addresses with the
client, the server temporarily keeps older IP addresses active
(alongside the new IP address), ensuring continuous availability
for clients in-between IP updates. While there are various
methods to securely share the latest server IP address, we
leverage the InterPlanetary File System (IPFS) [19] for its
decentralized nature, which makes it more difficult for adver-
saries to detect or block [20]. The NinjaDoH client integrates
fully within the operating system, making it compatible with
all browsers and applications without requiring any special
configuration or additional plugin. This is in contrast to out-of-
band DNS methods like DNS in Google Sheets [21]] or DNS
over Discord [22]], which lack seamless integration with user
environments.

Our key contributions in this paper are as follows:

o Design and Implementation of NinjaDoH Protocol: We
design and then implement the NinjaDoH protocol, a moving

target DoH server that leverages public cloud infrastructure
and IPNS to dynamically rotate its IP addresses, making
it resilient against list-based DNS blocking and detection
methods. We provide our implementation on AWS via our
code as an artifact.

+ Comprehensive Performance Evaluation: We evaluate
NinjaDoH’s performance in terms of DNS query latency and
compare it against other DNS services, including well-known
DoH providers and censorship-resistant alternatives like DoH
over Tor. Our results demonstrate that NinjaDoH delivers
low-latency performance, comparable to well-known public
DoH services. We share our complete performance and ML-
evasion datasets to serve as a foundational baseline for future
research exploring moving-target defense architectures.

« Evaluation of Censorship Resistance: We empirically
demonstrate NinjaDoH’s ability to evade both static, list-
based blocking and more advanced ML-based detection
systems that attempt to identify DoH traffic. This adaptability
ensures the DoH service remains accessible in networks with
heavy censorship while also being affordable.

II. BACKGROUND AND RELATED WORK

Authenticated and Encrypted DNS. DNSSEC [23]-[25]]
was developed to authenticate query responses, but it lacked
encryption. DoT [6] and DoQ [7], [26], [27] were later
developed to encrypt DNS queries and thus protect DNS
traffic from eavesdropping. Nonetheless, DoT, DoQ, and
DNSSEC operate on distinct ports (853/tcp, 853/udp, and
53/tcp, respectively), making it easy for censors to detect and
block [28]]. When this traffic is blocked, users often have
no choice but to use censoring DNS servers allowed in the
censored network. DoH encrypts DNS traffic using standard
HTTPS protocol, which is typically transmitted over port
443/tcp [8]]. This allows DoH to blend in with regular web
traffic, making it much harder for firewalls to detect and block
without affecting normal HTTPS activity [28]]. Proposals to
enhance the privacy of DoH have been introduced, such as
Oblivious DoH [29]].

DNS Blocking and Filtering. Several previous studies
have examined the extent of DNS-based censorship [3]], [4],
[30]—[41]], wherein networks of various scales block access
to external (unfiltered) DNS servers and mandate the use of
DNS servers that provide manipulated or filtered responses.
Jin et al. [42] found that using encrypted DNS resolvers
allowed access to 37% of censored domains from vantage
points in China, whereas none of the censored domains were
accessible from Iran due to additional censorship methods such
as SNI-based blocking of the websites [43]], [44]. SNI-based
blocking of websites can be bypassed using other censorship
circumvention tools [45]], [46].

DoH Blocking and Censorship Circumvention. Efforts to
block DoH traffic range from static blocklists to ML-based clas-
sifiers [[L15]-[18], though many still exhibit high false-positive
rates, underscoring the need for more resilient approaches like
NinjaDoH. Other systems protect DNS queries by shifting
them to alternative channels. DNS over Tor anonymizes query

origin and destination via onion routing [47], while out-of-
band methods such as DNS over Google Sheets [21] and
DNS over Discord [22[] provide unconventional but non user-
friendly pathways. General censorship-circumvention tools
including Tor [48] and VPNs [49]-[51] tunnel DNS and
web traffic through overlay networks, but can themselves be
blocked using deep packet inspection, IP filtering, or protocol
fingerprinting [52]-[55]]. Evasion techniques exist [56[]—[58], yet
the cat-and-mouse game between circumvention and censorship
continues.

Moving Target Defense. Moving target defense strategies
strengthen system resilience by continuously modifying system
characteristics, adding complexity that disrupts adversaries’
ability to predict and exploit vulnerabilities [S9-[61]. It is
widely applied across different areas, including enhancing soft-
ware security [[62]-[68]], establishing communication channels
resistant to interference [69]—[71]], protecting virtual machines
hosted on shared infrastructure [72], [73|], defending against
DDoS attacks [[74]-[78], securing critical infrastructure [79[—
[83]], and censorship-resistant web services [S], [L1], [84], [85].
Dynamically changing (sub)domains have been explored as a
moving target defense [3]], [86[|—[88]], but they are unsuitable for
NinjaDoH since they remain detectable without frequent root
domain and IP changes [[89]], [90], and frequent root domain
changes are economically constrained by ICANN’s one-year
registration minimum.

III. ADVERSARY MODEL

Our adversary model for NinjaDoH assumes that censors
implement DNS-based censorship by blocking access to
external DNS resolvers and forcing users to rely on their
own DNS servers with filtering rules (Figure [T). The censor
controls the network, which may be managed by an ISP, an
enterprise network administrator, or a government authority
with regulatory oversight. We categorize the adversary’s
capabilities into the two following groups:

« Blocking by IP or Domain Name: Censors may attempt to
block DoH traffic by maintaining blocklists of IP addresses
or domains associated with DoH servers. NinjaDoH aims
to counter this by employing dynamic IP address rotation
using hyperscalers, making it difficult to maintain effective
blocklists.

o Machine Learning-Based Detection: Advanced adversaries
may use ML techniques to identify DoH traffic based
on traffic flow characteristics. Although state-of-the-art
ML models are capable of detecting regular DoH traffic,
NinjaDoH aims to evade detection by minimizing flow
durations by employing IP address rotation and using
randomized DoH query paths to defeat active probing.
NinjaDoH is effective under the following assumptions about

the censorship environment:

o DNS-based Censorship: The primary method of censorship
is blocking external DNS resolvers and forcing users to
use the censors’ DNS servers that filter specific websites.
NinjaDoH aims to provide a way to bypass these DNS
restrictions.

o Websites’ IP Addresses Not Blocked: It is assumed that
the IP addresses of the websites themselves are not blocked
at the network-level firewall. If the censor blocks entire IP
ranges, clients must employ additional bypass techniques [J5]],
[L1], [45], [46], [S6]-[58].

« No Endpoint Control: The adversary does not have control
over the client endpoints. This implies that the adversary
cannot force SSL/TLS interception or proxy use with
SSL/TLS decryption, and users are free to install any software
on their devices (such as the NinjaDoH client).

o Neutral Cloud Provider: NinjaDoH requires a neutral
hyperscaler to host its server instance, ensuring that the
cloud provider does not collude with the adversary to identify
instances running NinjaDoH server code.

o Use with Other Censorship Circumvention Tools:
NinjaDoH is not required on a VPN or the Tor network, as
both of these tools can already enable access to external DNS
resolvers. But if NinjaDoH is used in parallel with VPNs
or Tor, it can provide low-latency DNS resolution, avoiding
the higher latency caused by routing DNS queries through
these networks. Moreover, in environments where Tor and
VPN protocols (and as a result, censorship circumvention
tools reliant on these protocols such as SpotProxy [11])) are
blocked [52]-[55]], NinjaDoH aims to provide an effective
solution. NinjaDoH will also improve the practicality and
enable use of NetShuffle [3]], a web censorship circumvention
protocol that can otherwise be blocked based on its static
root domain usage.

o Private Client-Server Communication: NinjaDoH is de-
signed to be hosted by individuals or small groups, ensuring
that the secret shared between the server and the clients,
which is used to communicate IP address changes, remains
private. This prevents the adversary from knowing the latest
IP addresses and subsequently blocking them.

IV. NinjaDoH SYSTEM MODEL
A. System Requirements

We define six requirements that address key dimensions
of performance, resilience, scalability, and usability. R1: The
system should provide low-latency DoH services, ensuring it
performs efficiently under realistic workloads. R2: The system
should outperform or match the performance of DoH over Tor,

i Censored

ENetwork . User D Censored

i - DNS Server

i f

i DNS| DNSSEC DoT DoQ DoH

i A. A, 4

Ports Blocked ; Listor ML-

Based

Outside False Blocking

Censored Uncensored Negatives

Network DNS Server

Fig. 1: Overview of the adversary model.

offering a practical and competitive alternative for censorship
resistance. R3: It should bypass firewalls that rely on blocklists
of known domains, IP addresses, or patterns, maintaining
uninterrupted traffic flow in censored environments. R4: The
system must evade detection by machine learning models,
which includes three sub-requirements: R4a: It should resist
detection by baseline ML detection models, ensuring resilience
against existing state-of-the-art methods for identifying DoH
traffic; R4b: It should remain resistant to adaptive adversaries,
preventing detection even when adversaries specifically train
their models on the system’s traffic; and R4e: It must introduce
scalability challenges for adversarial ML-based detection,
making it impractical for adversaries to apply detection models
at large scale. R5: The system should be cost-effective,
enabling deployment and operation with reasonable resource
consumption. R6: Finally, the system must afford a seamless
and user-friendly experience, ensuring minimal disruption to
regular internet usage and compatibility with common user
environments. To meet these requirements, we present the
NinjaDoH client-server architecture as shown in Figure [2]

B. The Server

IP Address Space and Networking. The cornerstone of
NinjaDoH is that it is a moving target DoH service. What makes
it a moving target is that its IP address changes frequently, at
a configurable frequency, a capability only made possible by
having a large IP address allocation pool available to quickly
swap in and swap out. Therefore, a public cloud provider that
has access to such an IP allocation pool is a key component
of this system design. We selected Amazon Web Services
(AWS) as our public cloud provider, but we believe that any
public cloud provider that allows for the dynamic allocation
of IP addresses to a compute instance would be a suitable
infrastructure layer for the system. At time of writing, the
AWS IPv4 public address pool is estimated to be over 100
million addresses.

For the prototype system, three elastic network interfaces
(ENI) were created inside a single region virtual private cloud
(VPC). Each ENI functions as a virtual network interface
card that can be dynamically assigned an IP address from
AWS’s IPv4 address pool. One of the ENIs serves to separate
management plane traffic from the application traffic. The
other two ENIs serve as the primary and alternate interfaces
for application plane traffic. Both of these two application plane
ENIs will route traffic to the same reverse proxy listening on
all available interfaces. The NinjaDoH protocol can scale to an
arbitrary number of ENIs in a deployment, given the compute
instance can support the desired number of ENIs.

Compute. The system only requires modest compute re-
sources, as the server runs a few lightweight services and does
not require much persistent storage. The system was tested
on a t2.small instance, which has 1vCPU and 2GB of RAM.
Additionally, Ubuntu server’s small operating system footprint
and short interval persistent log keeping means that the block
storage requirement is about 20GB.

& NinjaDoH Server IPFS
. Cloud Infrastructure NiniaDoH Server 6 | publishes Update to 1P
) Address to IPNS Hash
— | IPNS_HASH Resolves to
IPFS Node /"M =§1prs CID (Content D)
Incoming IPFS CID:
?IPNS Private Key] % New IP {timestamp: HH:MM:SS,
IP Address: X.X.X.X,
— query_path: /{IPNS_HASH}}
5 New IP Address
DNS Query Allocated
Resolved NinjaDoH Client
- <-tO—>«--- Client Maintains
DNS S Re P H] ~ H IPFS Node c 1 | Updated IPFS Record
erver everse Proxy ' [97 ! IPFS CID: via IPNS Hash
! timestamp: HH:MM:SS,
1443/dns-query £443/{IPNS_HASH} ; [y {mestamp: A
— 0= i query_path: /{IPNS_HASH}} 2 | User Makes DNS
~ [Request to Localhost
X.X.X.X
Client Routes Request '
through Current IP DNS Request -
Address X.X.X.X

Fig. 2: Overview of the NinjaDoH protocol and architecture. The NinjaDoH client maintains an updated IPNS record with
the latest server information via IPFS. When the user initiates a DNS request, it is first sent to the client’s localhost DNS
proxy, which then routes the request to the current IP address of the NinjaDoH server. At a configurable frequency, the server
allocates a new IP address and publishes this update to IPNS. The client retrieves the updated IP address via IPNS and uses it

for future DNS queries (until next IP update).

Software. Architecturally, the system requires a reverse
proxy and a recursive DNS on the server. The reverse proxy
has to be capable of forwarding HTTPS traffic from an arbitrary
path from the application ENIs to the DNS service. The
recursive DNS software has to be able to resolve DoH requests.
Both have to be able to accept custom certificates and modify
their certificates on-the-fly or with a short reload (so as not
to affect the user experience). There are several software
packages capable of meeting these requirements, but for our
prototype we chose two widely deployed, free and open source
software packages. The key external software dependencies
of our implementation are nginx [91|] and AdGuard Home [9].
A key, useful feature of AdGuard Home is that it can be
configured to use multiple upstream DoH providers to resolve
the client’s query. When configured with several reputable
upstream providers, there is a gained benefit of the user not
creating an identifiable signature on any specific upstream
provider.

Certificate Management. Certificate management ensures
secure communication between clients and the DoH service.
Given that NinjaDoH frequently rotates its public IP addresses,
maintaining valid SSL/TLS certificates for these changing
IP addresses presents unique challenges. Traditional certifi-
cate issuance processes are not designed for such dynamic
environments, necessitating a custom solution. To address
this, NinjaDoH employs an automated certificate generation
and management process that dynamically creates and signs
certificates whenever the set of public IP addresses changes.
This process leverages a private Certificate Authority (CA)
hosted on the server, allowing for rapid certificate issuance
without relying on external CAs. Clients are configured to trust
this private CA on setup, allowing them to trust new certificates
on-the-fly despite the frequent IP changes. Additionally, the
NinjaDoH CA can be installed solely for the local DNS proxy
rather than system-wide, confining its trust scope to encrypted

DNS traffic. While the ultimate safety of choosing which
NinjaDoH server to trust lies with the user, the risk is mitigated
by the user leveraging a secure, out-of-band channel that they
trust for this key exchange.

The certificate management workflow is integrated into the
system’s orchestration code and operates as follows:

1) Detection of IP Address Changes: When the system
allocates a new IP and associates it with one of the
application ENIs, it triggers the certificate regeneration
routine. This ensures that the certificates always reflect the
current set of public IP addresses.

Certificate Signing Request (CSR) Creation: A CSR is
created using the private key. The Common Name (CN)
in the CSR is set to the newest IP address in the current
list. An extension file is generated to include all current
public IP addresses under the subjectAltName field.
This ensures that the certificate is valid for any of the IP
addresses clients may connect to.

Certificate Signing & Reload: The CSR is signed using
the private CA’s key and certificate to produce the server
certificate. The certificate includes the SANs specified.
After the new certificate is generated, the reverse proxy is
reloaded to the updated certificate, ensuring that incoming
connections are secured using the latest certificate without
significant downtime.

2)

3)

Manipulating the Query Path. A DoH query requires a
query path to reach the DoH service on the server. While not
specifically required by the DoH RFC, Bottger et al. [28] show
that the majority of DoH providers use the query path cited in
the RFC examples, /dns—query. This pseudo-standard has
been exploited as a technique to actively probe if an address is
hosting a DoH service [15]]. Therefore, the NinjaDoH protocol
calls for using a non-standard query path. For our prototype,
we set the query path as the IPNS hash. We propose that for a

production environment, this path be randomized with varying

lengths as to further obfuscate its packet structure signature.

By making this custom query path the only accessible path
for accessing the DoH service, NinjaDoH prevents potential
DoH downgrade attacks [92] and defeats identification via
active probing on other common DNS server ports (such as
53 and 853). While query-path randomization does not fully
obfuscate traffic, it hinders naive fingerprinting and reduces
detection accuracy (see Section [V-C).

IPFS Node. The InterPlanetary File System (IPFS) node
distributes the updated public IP address to clients in a
decentralized and censorship-resistant manner. Recent work
has shown that IPFS maintains its functionality even under
some of the most oppressive censorship regimes [20]. While
certain IPFS gateways have been blocked in isolated events,
the system does not rely on gateways as the user can connect
directly to IPFS via a local node if a gateway is unavailable.
Ongoing research has shown that sophisticated IPFS censorship
strategies are actively being thwarted [93]], and alternative
mechanisms like domain-fronting remain viable if needed. By
leveraging IPFS and the InterPlanetary Name System (IPNS),
NinjaDoH disseminates routing information, without relying
on traditional DNS infrastructure or via a censorable storage
or communication medium. This process ensures that clients
always have access to the current IP address, even as it changes
frequently due to the moving target defense strategy.

The workflow for updating and publishing the IP address
via IPFS and IPNS is integrated into the system’s orchestration
code and operates as follows:

1) Adding Content to IPFS: Upon allocating a new Elastic
IP (EIP), the system creates a JSON object that includes
the new IP address, a query path, and a timestamp. The
JSON object is added to the local IPFS node using the IPFS
HTTP API. The system receives a Content Identifier (CID)
for the added content, which uniquely references the data
in the IPFS network.

2) Publishing to IPNS: The system publishes the CID to
IPNS using its private key. IPNS allows for mutable pointers
to immutable content in IPFS, enabling clients to resolve
the latest CID associated with a given IPNS address. The
PublishToIPFS and UpdateIPNSRecord functions
in Algorithm [T] make the new CID available to the client
via IPNS using the specified key name.

3) Verification and Propagation: After publishing, the system
verifies the new IPNS record by attempting to resolve it
locally and may publish the new CID to the IPFS PubSub
system to expedite propagation to connected peers. IPNS
PubSub is experimental and we show in the evaluation that
normal resolution via the DHT is sufficient.

The most critical step in this process is publishing the new
CID to IPNS, which ensures that clients can always retrieve the
latest IP address using the stable IPNS address. The parameters
in the implementation code ensure that the publication is forced,
resolves any conflicts, and sets appropriate lifetimes and time-
to-live (TTL) values. After publishing, the function verifies
the IPNS record by resolving it. By utilizing IPFS and IPNS,

Algorithm 1: NinjaDoHServerRoutine()

Data: Compute instance with set of network interfaces [;
global address pool p; subset of IPs p’ C p where one
IP maps to one interface f(p’ — 1)

Result: IP address rotated and published via IPNS

while Service is running do

Define: [, as the interface with the oldest IP

// Add new IP from p into p’ and assign it to lg

newIPAddress <— PullNewIP(p);

AssignIPTolnterface(newIPAddress, [..);

// Release disassociated IP back to the pool p

ReleaseDisassociatedIPs(p’);

// Use p' to update certs

UpdateSSLCertificates(p’);

// Generate a random query path

queryPath <— GenerateRandomQueryPath();

// Publish p’ via IPNS

content < CreateContent(p’, queryPath, getTimestamp());

cid < PublishToIPFS(content);

UpdateIPNSRecord(cid);

// Wait for next scheduled rotation

Sleep(rotationInterval);

end

Algorithm 2: NinjaDoHClientRoutine()

Data: IPNS key k; IPFS API endpoint u; DNS proxy
configuration path ¢
Result: Continuous connectivity to the DoH server with
dynamic IP updates

while Client is running do

// Resolve the latest IPNS content

cid < ResolvelPNS(k, u);

if cid is valid then

// Retrieve IP address and query path from
IPFS

(ip, queryPath) <— GetIPAndQueryPathFromIPFS(cid,

w);

if ip is new then
// Update the DNS proxy config
UpdateDNSConfig(ip, queryPath, c);
RelaodDNSProxy(c);
// Log new IP address
UpdateLastKnownIP(ip);

end

// Test DoH connectivity

connectivity <— TestDoHConnectivity(ip);

UpdateClientStatus(connectivity);

end
// Sleep before next update check
Sleep(updatelnterval);

end

we avoid dependence on centralized services, which can be
manipulated or blocked by adversaries.

This approach ensures continuous service availability by
creating a “ladder” of IP addresses. As the system rotates IP
addresses, clients connected via older IPs can still maintain
their connections because each network interface always has a
valid IP address assigned. By configuring a sufficient number of
network interfaces and selecting an appropriate rotation interval,
the system guarantees overlap between the old and new IP

addresses. This overlap allows clients enough time to update
to the new IP address before the one they are using is released
back to the pool. Unlike a load balancer, which distributes
traffic across multiple servers, NinjaDoH rotates IP addresses
on a single server without redirecting client requests. This
strategy ensures there is no downtime for valid IP addresses,
preventing dropped requests and maintaining a seamless user
experience during IP rotations.

C. The Client

The client component of NinjaDoH is designed to securely
and reliably connect to the moving target DoH service provided
by the server. Given the frequent rotation of the server’s IP
addresses and the utilization of a private CA, the client must
dynamically update its configuration to maintain seamless
connectivity. To achieve this, the client leverages its own access
to IPFS to retrieve the latest server information.

IPNS Key Exchange & Root Certificate Installation.
A foundational aspect of the client’s operation is the secure
exchange of a secret between the client and server during the
initial setup. This secret is the IPNS name hash used by the
server to publish its current IP address in IPFS. By possessing
this IPNS key, the client can resolve the server’s latest IP
address. This mechanism ensures that only authorized clients,
who have obtained the IPNS key through a secure channel,
can access the service.

Securely exchanging this secret presents a challenge, to
which we propose several mechanisms. Steganographic tech-
niques can embed the IPNS key within images, audio files,
or other media without arousing suspicion [94]]. Another
mechanism is to leverage end-to-end encrypted messaging
applications such as Signal or WhatsApp who are designed to
resist surveillance and interception [95]-[97]]. While this out-of-
band secret exchange could become a bottleneck to scaling a
single NinjaDoH instance, our focus is on using NinjaDoH as
an enabling mechanism for smaller, invite-only groups or as a
bootstrap for other moving-target defenses such as NetShuffle.

Since the server uses a private CA to issue SSL/TLS
certificates for its frequently changing IP addresses, clients
must additionally install the server’s root CA certificate on
their machines. The transmission of the private CA certificate
can be accomplished in a similar manner as the IPNS hash, or
once the IPNS hash has been secretly received, the client can
pull the private CA and the client software from IPFS.

Client Software and Operation. We implement a prototype
NinjaDoH client in Python, as a terminal application that
performs the key functions to ensure continuous access to a
NinjaDoH server as seen in the Figure] screenshot. It interacts
with a local IPFS node to resolve the IPNS key and retrieve
the latest CID with the server’s IP address information. Using
the CID, the client fetches the JSON object containing the
server’s current IP address, query path, and timestamp. If the
retrieved IP address differs from the one previously used, the
client updates its local DNS resolver configuration accordingly.
The client could use any other means to retrieve IPFS content,
such as an IPFS gateway or access to a non-local IPFS node.

To update the DNS resolver configuration, the client utilizes
dnscrypt—proxyﬂ a flexible DNS proxy that supports
encrypted DNS protocols, including DoH. The client generates
a new DNS stamp based on the latest IP address and query
path, then modifies the dnscrypt-proxy configuration file
to include this updated stamp. Following the configuration
update, the client reloads the proxy to apply the changes,
ensuring that subsequent DNS queries are forwarded to the
updated DoH server address.

Moreover, our implementation of the client continuously
monitors connectivity to the server by performing DNS queries
and measuring latency. Our interface offers users immediate
feedback about the system’s status and any connectivity
problems. Additionally, without a valid connection to the
NinjaDoH server, DNS queries will fail, which will prevent
unintentional DNS leaks. NinjaDoH is resistant to DoH
downgrade attacks [92] as long as browsers and applications are
configured to use the operating system’s default DNS settings,
which are continuously updated by the NinjaDoH client.

To ensure timely updates, the client can listen for changes
on the IPNS PubSub topic associated with the shared IPNS
key or at some configurable frequency (for our implementation
every 5 seconds), to resolve updates via IPNS. When the server
publishes a new update, indicating a change in the service’s IP
address, the client retrieves the latest information and repeats
the configuration update process. This mechanism allows the
client to follow the server’s moving target defense strategy
without manual intervention of the end user. As long as the
client is able to update the IP address of the server before that
IP address is rotated out completely (a function of how many
ENIs the server uses and its rotation interval), the client will
retain service. One of the added benefits of a NinjaDoH client is
that it maintains compatibility with existing operating systems,
software, and the current DNS system, unlike out-of-band
methods, as discussed previously.

Dependencies. The client relies on a few key dependencies
and environmental requirements. An IPFS node or gateway
must be accessible to resolve IPNS records and retrieve content
from the IPFS network. A capable DNS proxy must be
installed to handle encrypted DNS queries and support dynamic
updates of the server’s stamp. The client routine is illustrated
in Algorithm [2]

V. EVALUATION

We designed the system to meet the system requirements in

Section [[V-A] informed by the adversary model in Section

Now, using our implementation of the system, we evaluate it
against the system requirements.

A. Baselining Latency

To baseline the latency between the different DoH providers,
we queried the top domains from the Cisco Umbrella Top 1M
lisﬂ recording both ping and query response times. We used
randomized subdomains to help prevent upstream caching.

Thttps://github.com/DNSCrypt/dnscrypt-proxy
Zhttps://umbrella-static.s3-us-west-1.amazonaws.com/index.html

610
605 A
600 -
595 A

590 7
20 7

15 A I

DNS Resolution Time (ms)

10

’bQ/
QS

(}0\38\ & o

Fig. 3: Mean DNS resolution time with 95% confidence
intervals for different DNS servers. The y-axis includes a
break to show the large discrepancy between standard DNS
servers and DNS over Tor.

Public DoH Providers. We evaluated the performance of
different DNS resolvers, including the NinjaDoH server, a
Control server that was hosted on the same AWS region with
just AdGuard Home configured identically to the NinjaDoH im-
plementation, and a group of Public DNS resolvers (Cloudflare,
Google, and Hurricane Electric (HE)). The primary metric is
the DNS resolution time, which is the ping adjusted time to
return the DNS query measured in milliseconds (ms).

The NinjaDoH server demonstrated an average resolution
time of 12.68 ms, comparable to the Control server’s resolution
time of 7.85 ms, indicating negligible performance differences.
The Public DNS group demonstrated an average resolution
time of 7.77 ms.

The confidence intervals indicate that the difference between
the NinjaDoH and both the Control server and public DoH
providers is, for an end user, practically negligible, where our
system adds about 4-5 ms of latency to each request. This can
be explained by both the added step of the client making a
call to its local proxy instead of directly to the server and that
a slight delay during IP rotation. During this collection period
the NinjaDoH rotated IP addresses three times and had zero
dropped client queries.

DNS over Tor. In this section, we compare the performance
of NinjaDoH with DNS over Tor. While Tor itself may be
blocked in the strictest censorship regimes, DoH over Tor is still
a well-known, readily deployable solution for avoiding DNS-
based blocking and represents a widely accepted reference point
in the censorship-circumvention literature. Moreover, even in
environments where Tor’s default configuration is blocked, its
pluggable transports often remain viable. We therefore use
DNS over Tor as a natural, real-world baseline for censorship-
resistant DNS resolution despite its performance overhead. The

primary metric of comparison remains the DNS resolution
time. DNS over Tor provides censorship-resistance by routing
DNS requests through the Tor network, but it comes at the
cost of increased latency. For the DNS over Tor experiments,
we used Cloudflare’s DoH service on To In total, 10 Tor
circuits were used to collect data, with each circuit performing
DoH lookups for 10 domains. The experiments were conducted
by repeatedly generating new Tor circuits using the NEWNYM
signal to obtain fresh exit nodes.

The NinjaDoH setup provided a significantly lower average
resolution time, with a mean ping adjusted query time of
12.68 ms, compared to DNS over Tor, which exhibited a
much higher mean resolution time of 601.16 ms. This large
discrepancy in DNS resolution times highlights the latency
overhead introduced by Tor’s network routing. Figure [3| shows
the combined, ping adjusted mean query resolution times for
the public DoH providers, the control, NinjaDoH, and DNS
over Tor.

Fast and Efficient DoH Service (R1 & R2). Our evaluation
confirms that NinjaDoH provides low-latency DoH services
with an average resolution time of 12.68 ms. This is
only about 4.91ms slower than public DNS resolvers
(average 7.77ms). In stark contrast, DNS over Tor ex-
hibits a significantly higher average resolution time of
601.16 ms, demonstrating the latency overhead of Tor’s
network routing. These results fulfill R1 by demonstrating
efficient performance under realistic workloads and R2
by offering a practical alternative to existing censorship-
resistant techniques with minimal additional latency.

B. List-based Firewall Evasion

List-based firewall blocking is the most prevalent method
to restrict access to DoH services and enforce censorship
policies. These firewalls maintain static blocklists of known
DoH server domains and IP addresses, often sourced from
public repositories. These can be curated lists specifically
targeting DoH providers, or in the most extreme, lists to
block all known public DNS providers Commercial providers
advertise capabilities that they have the most up-to-date and
relevant blocklists, and some governments and ISPs offer a
Protective DNS (PDNS) service to their constituents and users
which rely on such updated lists [98]]. By blocking these known
entities, censors aim to compel users to either fallback to
unencrypted DNS queries, or use resolvers that they control,
which can then be readily surveilled.

To evaluate the efficacy of NinjaDoH in evading such list-
based blocking methods, we evaluated it against techniques
across OSI layers. As summarized in Table I} NinjaDoH suc-
cessfully bypasses domain and IP blocking by not utilizing
a domain name and by dynamically changing its IP ad-
dress. Additionally, it evades application-level identification
by mimicking regular HTTPS traffic, avoiding typical DoH

3 dns4torpnlfs2ifuz2s2yf3fc7rdmsbhm6rw75euj35pac6ap25zgqad.onion
“https://github.com/curl/curl/wiki/DNS-over-HTTPS
Shttps://public-dns.info/nameservers.txt

traffic patterns through mechanisms like changing the query
path that could trigger deep packet inspection filters. While
NinjaDoH cannot circumvent strict IP or domain allowlisting,
where all unknown IPs and domains are blocked, this method
is highly restrictive, costly to maintain, and impractical for
most network environments.

Bypasses Firewall Blocklists (R3). NinjaDoH successfully
evades 4 out of 5 common DoH blocking methods employed
by popular firewalls, including domain blocking, IP block-
ing, application identification, and SNI blocking. By not
utilizing domain names, dynamically changing IP addresses,
and mimicking regular HTTPS traffic, NinjaDoH maintains
uninterrupted traffic flow in censored environments where
blocklists are employed. This fulfills R3 by effectively
bypassing current, prevalent censorship techniques.

C. Machine Learning Evasion

To evaluate the performance of NinjaDoH against machine
learning (ML) detection techniques, various models from
previous works have been selected. ML-based inspection of
HTTPS traffic has become increasingly prevalent, and DoH
is not inherently immune. Using the methodology of Jerabek
et al. [15] with tooling from MontazeriShatoori et al. [16]]
(hereafter referred to as DoHlyzeIE]), five state-of-the-art model
architectures were evaluated.

Models. Four of the models were Deep Neural Networks
(DNNs). The LSTM-Based Model uses Long Short-Term
Memory units to capture temporal dependencies in network
traffic sequences, making it suitable for time-series data. The
Fully Dense Model processes traffic flows independently, which
allows for faster computation but may miss sequential patterns.
The CNN-Based Model employs 1D Convolutional Neural
Networks to detect local patterns within the data, identifying
spatial or temporal correlations. Finally the Hybrid LSTM-
Dense Model combines dense and LSTM layers, balancing
feature extraction with sequential modeling for improved
performance. Each DNN model was trained using different
flow sequence lengths (from 4 to 10) to assess how traffic
sequence length impacts detection performance. This allows
for evaluation of both short-term and long-term traffic patterns.
For the decision tree classifier, we reproduce the XGBoost
model by Jerabek et al. [15] with original code and training
data. XGBoost is a gradient boosting decision tree algorithm
known for its effectiveness in structured data analysis.

Datasets. The training dataset used for the DNN models
was sourced from the DoHLyzer repository, containing both
DoH and non-DoH samples with time-series features. For
the XGBoost model, the training dataset consists of PCAP
files extracted from the DoH-Gen—-F-AABBC database [99].
This dataset features encrypted traffic enriched with key TLS
attributes such as TLS_ALPN, TLS_JA3, and TLS_SNI,
which provide rich feature sets for training and evaluating
ML models. Additionally, the dataset includes a list of known,
public DoH providers’ IP addresses.

Shttps://github.com/ahlashkari/DoHLyzer

Evaluation '
Training H
A Existing ,
| Training DoH Test '
| Dataset Dataset '
H o |t
| H
- - H '
[-— ! :
-— ‘_| : :
; NinjaDoH Test @ !

NinjaDoH NinjaDoH

Training Test

Trained Models Dataset Dataset

Fig. 4: Evaluation model to detect NinjaDoH traffic.

Flow Stitching. To prepare the training data, the traffic was
consolidated into bidirectional flows, grouping packets based
on common characteristics, such as source and destination
IP addresses, ports, protocols, and timestamps, creating a
comprehensive view of the entire traffic session. Some of
the extracted features of the bidirectional flows from the PCAP
files are Mean Payload Size, Number of Packets, Client-to-
Server Packet Ratio, and Mean Time Between Packets. There
are over a dozen features extracted from the flows, and the
current approaches using these features have been shown to
detect DoH flows. A flow is classified as DoH or non-DoH by
the IP address list of known DoH IP addresses found in the
dataset.

Training. The dataset was split it into a training set and
a test set. The models were then trained on the training set
(Step 1 in Figure [). Following the training phase, the models
were evaluated on the test set (Step 2 in Figure [). The results
from this evaluation on the baseline training data is consistent
with the target from the prior work. F1 scores, precision, and
recall metrics all ranging between 0.98 and 0.99, demonstrating
the effectiveness of the models in detecting DoH traffic. Each
DNN model was trained with varying flow sequence lengths,
ranging from 4 to 10 timesteps. The sequence length, or
the number of timesteps, plays a crucial role in capturing
temporal dependencies within the data, especially for models
like LSTMs that are designed for sequential information. By
experimenting with different sequence lengths, we aimed to
find the optimal configuration that maximized the model’s
performance. After training and evaluating the models across
the various sequence lengths, the best sequence number for
each model was determined based on the highest F1 score
achieved during testing to balance precision and recall.

Results. We then evaluated the trained models against new
traffic, this time captured from a NinjaDoH session. We
captured three-minute’s worth of typical browsing activity
by an end-user who was using NinjaDoH, which became
the evaluation set. The resulting PCAP file is processed to
bidirectional flow format for compatibility with the models.
Each trained model is subsequently given the evaluation set to
see how well it can detect NinjaDoH traffic. In this scenario,
the adversary faces trade-offs: false positives impact network
usability, emphasizing the importance of precision, while
missed detections (recall) reduce the adversary’s effectiveness
in censorship.

Undetectable by Current ML Models (R4a). The system
effectively resists detection by baseline ML detection mod-
els. As shown in the Figure[5] the models achieve an average
recall of 0.506, which is comparable to random guessing.
Precision and Fl-scores similarly reflect poor detection
capability. This meets R4a by demonstrating resilience
against existing state-of-the-art methods for identifying DoH
traffic, rendering the detection models ineffective against
NinjaDoH traffic.

D. Adaptive Adversary Evasion

In our evaluations so far, we have assumed a static adversary
who employs their current censorship strategies and is either
unaware of, or specifically not targeting NinjaDoH users.
In this section, we evaluate our system against a notional,
adaptive adversary that is both aware of, and specifically
targeting NinjaDoH. This adversary can deploy their own
NinjaDoH server outside their network, and then monitor the
traffic from a client that they control within their network. There
are several configurable parameters to a NinjaDoH deployment
that an attacker wouldn’t know, such as the IP rotation interval
(the interval itself could be stochastic), the IP address blocks in
use, or any additional traffic shaping techniques employed by
the system deployer. However, they would know the general
architecture and be able to deploy their own instance and
experiment with their own parameters

Niktabe et al. [[I7] show that linear models specifically
trained on known malicious DoH traffic data can have per-
formance similar to deep neural networks in classification
performance. This illustrates the potential power of an adversary
who specifically trains a model against known NinjaDoH traffic.
Linear models will have a faster inference time than deep neural
networks in evaluating new traffic. However, the authors note
that there still exists “Inadequate detection of obfuscated and
disguised malicious traffic.” Therefore, even if a model is
specifically trained on NinjaDoH traffic, it will have to be able
to conduct its inference fast enough in order to actually deny
the service at a practical level.

Most previously known DoH providers are eventually
censored by these approaches because once the censor has
determined a domain or IP is classified as a DoH provider,
that domain or IP is added to a blocklist. Since NinjaDoH 1is
IP-agile and doesn’t use domain names, even if an adaptive
adversary has a perfect model for detecting NinjaDoH traffic,
they will only be able to temporarily deny service after the
user’s first query until the next IP rotation.

To evaluate this, we assumed the role of a determined
adversary that deployed their own system with perfect visibility
into ground-truth network traffic. The system was configured
with a pseudo-random IP rotation frequency between 1-
3 minutes. Data was collected over a 15 minute period, which
resulted in 10 distinct IP rotations and a >1GB PCAP file
to use for training. The traffic was captured and processed
in the same manner as in Section This ground-truth
NinjaDoH traffic is mixed with both “benign” DoH traffic and
non-DoH traffic for training the models. The newly trained

adversarial model was used on the same evaluation set as
before, and Figure [6] shows that performance improves across
all the model types that we evaluated with the NinjaDoH traffic
present in the training set.

There are a number of reasons why this tailored model
shows improvement. In the data processing step, flows are
extracted from the pcap file, and then are processed into both
statistical and time series features. Both of these feature sets
that the models are trained on use flow sequences of packets
between the DoH server and the client. We found that the
NinjaDoH traffic produced a normally-distributed number of
“clumps” of packets in each flow sequence, with p = 10.30,
o = 5.20. However, the benign DoH traffic produced much
higher average clump sizes (1 = 135.64) and a reflects a log-
normal distribution with o = 1.57, A = 26.68. Therefore, it
possible that the sequences of NinjaDoH traffic from one IP
to the next are features that can be learned, leading to the
model gaining predictive power from the information-sparse
NinjaDoH flows. However, this improved performance does not
currently approach an acceptable level for a would-be censor.

Resilience to Adaptive Adversaries (R4b). Even when
facing adaptive adversaries who specifically train models
on NinjaDoH traffic, detection performance improves but
remains insufficient for effective censorship. The best model
trained with NinjaDoH traffic achieves a precision of 0.764,
recall of 0.635, and F1-score of 0.578. While these metrics
are higher than those without targeted training, they do not
reach levels that would allow a censor to reliably detect
and block NinjaDoH traffic. This fulfills R4b by showing
that the system remains resistant to adversaries who tailor
their models to detect its traffic.

E. Scalability of Adversarial ML-based Detection

Detecting DoH traffic in large networks using ML models
presents significant scalability challenges, especially against
NinjaDoH. To block traffic effectively, an adversary must
capture enough packets to reconstruct flows, extract features,
and perform inference before the NinjaDoH client rotates to a
new IP address. As network scale increases, the feasibility of
this approach diminishes due to the growing data volume and
computational demands.

To illustrate the computational burden on an adversary, we
model the detection process and estimate the time required to
process network traffic at different scales. Our model simulates
the adversary’s detection process, incorporating components
that reflect real-world network conditions and constraints.

Flow arrivals are modeled as a Poisson process to represent
the random nature of flow initiations in a network. The inter-
arrival times (7,) are exponentially distributed with rate A,
where \ = W. Flow durations (D) are modeled
using a log-normal distribution to reflect the positive skew
observed in real data, as evidenced by our collected flow
duration statistics (Table [[T). This distribution accounts for the
wide variability in flow lengths, with many short flows and a
few long-lasting ones.

The adversary must process each flow within the IP rotation
interval (Tioation = 608) , with a fixed processing time per flow
(1), such as 0.1ms, 1ms, or 10ms. Processing starts after
the flow ends and a processor becomes available, calculated
as S; = max(E;, A;), where F; is the flow end time and A;
is the processor’s availability.

The performance metric of interest is the probability of
detecting DoH flows (Pietect_ port)- This is calculated by dividing
the expected number of detected DoH flows by the total number
of DoH flows. The expected detected DoH flows are computed
as the product of the processed DoH flows and the true positive
rate (TPR), i.e., Fprocessed_porr X TPR.

N, proc

Peec oH — i 17
detect_DoH mln()\Tp

> x TPR

Figure [§] presents the simulation results that show that
unless the adversary can process all flows in near real-time,
the probability of detecting DoH traffic declines significantly.
Achieving this requires substantial computational resources,
which is impractical and cost-prohibitive at scale. This scaling
becomes even more impractical when considering the additional
overhead of packet capture, flow reconstruction, and feature
extraction required for the detection process.

Moreover, even if the adversary manages to detect and
block an IP address, the benefit is short-lived due to frequent
IP rotations. The adversary would need continuous detection
process, incurring ongoing computational costs. This imposes
a disproportionate burden on the adversary compared to
potential minimal disruption caused to NinjaDoH users. This
asymmetry underscores the inherent scalability challenges faced
by adversaries attempting to detect and block DoH traffic in
large-scale networks.

Scaling ML Detection is Impractical (R4c). Our modeling
suggests that adversaries face significant scalability chal-
lenges when attempting to detect NinjaDoH traffic using
ML-based methods at large scale. Even with such resources,
the detection probability remains limited by the ML model’s
true positive rate. This satisfies R4c by demonstrating that
widespread ML-based detection is infeasible due to the
disproportionate computational costs involved.

F. Costs to Deploy & Integrate

At time of writing, to implement our prototype of the
server-side, the price is $23.55 USD/month. Even cheaper
infrastructure for the server may be available on different
cloud providers, or by using more lightweight DNS resolver
software. Monthly subscriptions for VPNs for a single user
cost between $10 and $15, so this is a cost efficient system
that can deliver censorship resistant DoH-as-a-service to many
users for slightly more than a single VPN subscription. While
this is not a VPN, it is useful for comparison in terms of
cost to an end user. As seen in Figure 0] the screenshot of
the prototype, the client implementation integrates into the
end-user’s existing operating system and workflow with no
additional configuration or software to configure.

10

Affordable and User-Friendly (R5 & R6). The system
fulfills RS by offering cost-efficiency for individual users,
while scaling up to larger cloud instances remains affordable
for privacy-focused groups and communities. It satisfies
R6 through OS-level client integration, ensuring seamless
compatibility with existing operating systems, software, and
the current DNS infrastructure.

VI. DISCUSSION AND FUTURE WORK

Next, we discuss the practical applications of NinjaDoH and
potential future work in censorship circumvention.

NinjaDoH Client as an Edge DNS Server. While
NinjaDoH was presented as a client-side DNS tool, its design
naturally supports recursive use. A NinjaDoH client inside a
censored network can operate as an uncensored edge DNS
server (Figure [7), allowing others to query it directly. This
removes the need for per-user NinjaDoH servers or shared [IPNS
hashes, simplifying deployment and improving scalability.

Performance and Usability. NinjaDoH achieves DNS
latency roughly 50 times lower than the censorship-resistant
DoH system built on Tor. It provides performance comparable
to standard DoH, while Tor-based approaches incur heavy
delays due to multi-hop routing. NinjaDoH also allows users
to deploy their own infrastructure or rely on a trusted public
instance, avoiding dependence on Tor’s relays and exit nodes,
which introduce overhead and additional vulnerabilities [[100].
This reduces the attack surface and improves overall security.

Use of Hyperscalers. Similar to recent systems such
as NetShuffle [5]] and SpotProxy [11]], NinjaDoH leverages
cloud resources to rapidly rotate IP addresses, hindering
effective blocklisting. At the same time, P2P overlays such as
IPES enable decentralized distribution of service information
without relying on censorable DNS infrastructure. This novel
combination of cloud agility and P2P networking shows how
not only software solutions but also innovative use of on-
demand, software-defined infrastructure can address complex
security challenges.

Evaluation of Censorship Resistance. We demonstrate
robust resistance against current methods of blocking DoH
traffic, with additional security evaluations in Appendix
It effectively evades list-based blocking techniques due to
its dynamic IP rotation and lack of reliance on domain
names. Even when an adaptive adversary trains models on
NinjaDoH traffic, the cost to implement a real-time system
with acceptable false positive rates is high, suggesting that it
can withstand sophisticated censorship attempts.

VII. CONCLUSION

NinjaDoH is a moving target DNS over HTTPS protocol that
rotates hyperscaler IP addresses and advertises them via IPNS
instead of domains. Experiments with commercial firewalls and
state-of-the-art ML models show that NinjaDoH can frustrate
both list based and learning based blocking, significantly raising
the real-time resources required for censorship. NinjaDoH helps
secure DNS access and can bootstrap richer circumvention
systems in censored networks.

(1]

[2]

[3]
[4]

[5]

(6]

(7]
[8]
[91

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

REFERENCES

Wikimedia Foundation, “Wikimedia Foundation urges Pakistan Telecom-
munications Authority to restore access to Wikipedia in Pakistan,”
https://wikimediafoundation.org/news/2023/02/03/wikimedia-fou
ndation-urges- pakistan-telecommunications- authority- to-restore-acces
s-to-wikipedia-in-pakistan/, 2023.

Japan Today, “TikTok compares itself to foreign-owned American news
outlets as it fights forced sale or ban,” https://japantoday.com/category/,
tech/tiktok-compares-itself-to-foreign-owned-american-news-outlets
-as-it-fights- forced- sale-or-ban, 2020.

A. Master, “Modeling and characterization of internet censorship
technologies,” Ph.D. dissertation, Purdue University, 2023.

N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak,
M. Crete-Nishihata, P. Gill, and M. Polychronakis, “How great is the
great firewall? measuring china’s {DNS} censorship,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 3381-3398.

P. T. J. Kon, A. Gattani, D. Saharia, T. Cao, D. Barradas, A. Chen,
M. Sherr, and B. E. Ujcich, “Netshuffle: Circumventing censorship with
shuffle proxies at the edge,” in 2024 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2024, pp. 3497-3514.

Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman,
“Specification for DNS over transport layer security (TLS),” Tech. Rep.,
2016.

C. Huitema, S. Dickinson, and A. Mankin, “RFC 9250: DNS over
Dedicated QUIC Connections,” 2022.

P. Hoffman and P. McManus, “DNS queries over HTTPS (DoH),” Tech.
Rep., 2018.

AdGuard, “AdGuard Home,” https://github.com/AdguardTeam/AdGua
rdHome, 2024.

Pi-hole, “Pi-hole,” https://github.com/pi-hole, 2024.

P. T. J. Kon, S. Kamali, J. Pei, D. Barradas, A. Chen, M. Sherr,
and M. Yung, “{SpotProxy}: Rediscovering the cloud for censorship
circumvention,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 2653-2670.

Amazon, “Amazon Web Services (AWS),” https://aws.amazon.com,
2023.

Google, “Google Cloud Platform,” https://cloud.google.com, 2023.
Microsoft, “Microsoft Azure,” https://azure.microsoft.com, 2023.

K. Jerabek, K. Hynek, O. Rysavy, and I. Burgetova, “Dns over https
detection using standard flow telemetry,” IEEE Access, vol. 11, pp.
50000-50012, 2023.

M. MontazeriShatoori, L. Davidson, G. Kaur, and A. H. Lashkari,
“Detection of doh tunnels using time-series classification of encrypted
traffic,” in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). 1EEE,
2020, pp. 63-70.

S. Niktabe, A. H. Lashkari, and D. P. Sharma, “Detection, character-
ization, and profiling DoH Malicious traffic using statistical pattern
recognition,” International Journal of Information Security, vol. 23,
no. 2, pp. 1293-1316, 2024.

R. Mitsuhashi, Y. Jin, K. Iida, T. Shinagawa, and Y. Takai, “Malicious
dns tunnel tool recognition using persistent doh traffic analysis,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
20862095, 2022.

Protocol Labs, “InterPlanetary File System (IPFS),” https:/ipfs.tech/,
2024.

L. Balduf, S. Rust, and B. Scheuermann, “I’'m InterPlanetary, Get
Me Out of Here! Accessing IPFS From Restrictive Environments,”
in Proceedings of the 4th International Workshop on Distributed
Infrastructure for the Common Good, 2023, pp. 13-18.

Cloudflare, “DNS in Google Sheets,” https://developers.cloudflare.com
/1.1.1.1/other-ways-to-use- 1.1.1.1/dns-in-google-sheets/, 2024.

——, “DNS over Discord,” https://developers.cloudflare.com/1.1.1.1/0
ther-ways-to-use-1.1.1.1/dns-over-discord/, 2024.

G. Ateniese and S. Mangard, “A new approach to dns security
(dnssec),” in Proceedings of the 8th ACM conference on Computer
and Communications Security, 2001, pp. 86-95.

W. Lian, E. Rescorla, H. Shacham, and S. Savage, “Measuring the
practical impact of {DNSSEC} deployment,” in 22nd USENIX Security
Symposium (USENIX Security 13), 2013, pp. 573-588.

11

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, and C. Wilson, “A
longitudinal,{End-to-End} view of the {DNSSEC} ecosystem,” in
26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
1307-1322.

M. Kosek, L. Schumann, R. Marx, T. V. Doan, and V. Bajpai, “Dns
privacy with speed? evaluating dns over quic and its impact on web
performance,” in Proceedings of the 22nd ACM Internet Measurement
Conference, 2022, pp. 44-50.

M. Kosek, T. V. Doan, M. Granderath, and V. Bajpai, “One to rule
them all? a first look at dns over quic,” in International Conference
on Passive and Active Network Measurement. Springer, 2022, pp.
537-551.

T. Bottger, F. Cuadrado, G. Antichi, E. L. Fernandes, G. Tyson, 1. Castro,
and S. Uhlig, “An empirical study of the cost of dns-over-https,” in
Proceedings of the Internet Measurement Conference, 2019, pp. 15-21.
S. Singanamalla, S. Chunhapanya, J. Hoyland, M. Vavrusa, T. Verma,
P. Wu, M. Fayed, K. Heimerl, N. Sullivan, and C. Wood, “Oblivious dns
over https (odoh): A practical privacy enhancement to dns,” Proceedings
on Privacy Enhancing Technologies, 2021.

P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and
V. Paxson, “Global measurement of {DNS} manipulation,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 307—
323.

M. Wander, C. Boelmann, L. Schwittmann, and T. Weis, “Measurement
of globally visible dns injection,” IEEE Access, vol. 2, pp. 526-536,
2014.

O. Farnan, J. Wright, and A. Darer, “Analysing censorship circumvention
with vpns via dns cache snooping,” in 2019 IEEE Security and Privacy
Workshops (SPW). 1EEE, 2019, pp. 205-211.

N. P. Hoang, S. Doreen, and M. Polychronakis, “Measuring {I2P}
censorship at a global scale,” in 9th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 19), 2019.

A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Razaghpanah,
N. Christin, and P. Gill, “Iclab: A global, longitudinal internet censorship
measurement platform,” in 2020 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2020, pp. 135-151.

N. P. Hoang, J. Dalek, M. Crete-Nishihata, N. Christin, V. Yegneswaran,
M. Polychronakis, and N. Feamster, “{GFWeb}: Measuring the great
firewall’s web censorship at scale,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 2617-2633.

A. Bhaskar and P. Pearce, “Many roads lead to rome: How packet
headers influence {DNS} censorship measurement,” in 3/st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 449-464.

S. Burnett and N. Feamster, “Making sense of internet censorship: a
new frontier for internet measurement,” pp. 84-89, 2013.

M. Kiihrer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going
wild: Large-scale classification of open dns resolvers,” in Proceedings
of the 2015 Internet Measurement Conference, 2015, pp. 355-368.

P. Calle, L. Savitsky, A. N. Bhagoji, N. P. Hoang, and S. Cho, “Toward
automated dns tampering detection using machine learning,” Free and
Open Communications on the Internet, 2024.

K. Bock, Y. Fax, K. Reese, J. Singh, and D. Levin, “Detecting and
evading {Censorship-in-Depth}: A case study of {Iran’s} protocol
whitelister,” in 10th USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI 20), 2020.

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi, “Censored planet:
An internet-wide, longitudinal censorship observatory,” in proceedings
of the 2020 ACM SIGSAC conference on computer and communications
security, 2020, pp. 49-66.

L. Jin, S. Hao, H. Wang, and C. Cotton, “Understanding the impact
of encrypted DNS on internet censorship,” in Proceedings of the Web
Conference 2021, 2021, pp. 484-495.

W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment, “Improving
sni-based https security monitoring,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 2016, pp. 72-77.

K. Bock, G. Naval, K. Reese, and D. Levin, “Even censors have a
backup: Examining china’s double https censorship middleboxes,” in
Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open
Communications on the Internet, 2021, pp. 1-7.

W. M. Shbair, T. Cholez, A. Goichot, and I. Chrisment, “Efficiently
bypassing sni-based https filtering,” in 2015 IFIP/IEEE International

https://wikimediafoundation.org/news/2023/02/03/wikimedia-foundation-urges-pakistan-telecommunications-authority-to-restore-access-to-wikipedia-in-pakistan/
https://wikimediafoundation.org/news/2023/02/03/wikimedia-foundation-urges-pakistan-telecommunications-authority-to-restore-access-to-wikipedia-in-pakistan/
https://wikimediafoundation.org/news/2023/02/03/wikimedia-foundation-urges-pakistan-telecommunications-authority-to-restore-access-to-wikipedia-in-pakistan/
https://japantoday.com/category/tech/tiktok-compares-itself-to-foreign-owned-american-news-outlets-as-it-fights-forced-sale-or-ban
https://japantoday.com/category/tech/tiktok-compares-itself-to-foreign-owned-american-news-outlets-as-it-fights-forced-sale-or-ban
https://japantoday.com/category/tech/tiktok-compares-itself-to-foreign-owned-american-news-outlets-as-it-fights-forced-sale-or-ban
https://github.com/AdguardTeam/AdGuardHome
https://github.com/AdguardTeam/AdGuardHome
https://github.com/pi-hole
https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com
https://ipfs.tech/
https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-in-google-sheets/
https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-in-google-sheets/
https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-over-discord/
https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-over-discord/

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Symposium on Integrated Network Management (IM).
990-995.

S. Satija and R. Chatterjee, “Blindtls: Circumventing tls-based https
censorship,” in Proceedings of the ACM SIGCOMM 2021 Workshop
on Free and Open Communications on the Internet, 2021, pp. 43-49.
Cloudflare, “DNS over Tor,” https://developers.cloudflare.com/1.1.1.1/0
ther-ways-to-use- 1.1.1.1/dns-over-tor, 2024.

R. Dingledine, N. Mathewson, P. F. Syverson et al., “Tor: The second-
generation onion router.” in USENIX security symposium, vol. 4, 2004,
pp. 303-320.

C. Scott, P. Wolfe, and M. Erwin, Virtual private networks.
Media, Inc.”, 1999.

M. Feilner, OpenVPN: Building and integrating virtual private networks.
Packt Publishing Ltd, 2006.

J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel.”
in Network and Distributed System Security (NDSS) Symposium, 2017.
P. Winter and S. Lindskog, “How the great firewall of china is blocking
tor,” in 2nd USENIX Workshop on Free and Open Communications
on the Internet, Bellevue, WA. USENIX-The Advanced Computing
Systems Association, 2012, p. 7.

R. Singh, R. Nithyanand, S. Afroz, P. Pearce, M. C. Tschantz, P. Gill,
and V. Paxson, “Characterizing the nature and dynamics of tor exit
blocking,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 325-341.

D. Xue, R. Ramesh, A. Jain, M. Kallitsis, J. A. Halderman, J. R.
Crandall, and R. Ensafi, “Openvpn is open to vpn fingerprinting,”
Communications of the ACM, 2022.

M. Zain ul Abideen, S. Saleem, and M. Ejaz, “Vpn traffic detection
in ssl-protected channel,” Security and Communication Networks, vol.
2019, no. 1, p. 7924690, 2019.

Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your
state is not mine: A closer look at evading stateful internet censorship,”
in Proceedings of the 2017 Internet Measurement Conference, 2017,
pp. 114-127.

L. Dixon, T. Ristenpart, and T. Shrimpton, “Network traffic obfuscation
and automated internet censorship,” IEEE Security & Privacy, vol. 14,
no. 6, pp. 43-53, 2016.

S. Hayeri, “GreenTunnel,” https://github.com/SadeghHayeri/GreenTun
nel, 2022.

S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang,
Moving target defense: creating asymmetric uncertainty for cyber threats.
Springer Science & Business Media, 2011, vol. 54.

R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of moving
target defense,” in Proceedings of the First ACM Workshop on Moving
Target Defense. ACM, 2014.

J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J.
Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward proactive, adaptive
defense: A survey on moving target defense,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 709-745, 2020.

D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler: fast
and deployable continuous code {re-randomization},” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 367-382.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 276-291.

T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated software
diversity,” Moving Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats, pp. 77-98, 2011.

B. Baudry and M. Monperrus, “The multiple facets of software diversity:
Recent developments in year 2000 and beyond,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, pp. 1-26, 2015.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE symposium
on security and privacy. 1EEE, 2013, pp. 574-588.

Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel tsx,” in ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 380-392.

J. Seo, B. Lee, S. M. Kim, M.-W. Shih, 1. Shin, D. Han, and
T. Kim, “Sgx-shield: Enabling address space layout randomization

IEEE, 2015, pp.

”O’Reilly

12

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

for sgx programs.” in Network and Distributed System Security (NDSS)
Symposium, 2017.

Y. Gao, Y. Xiao, M. Wu, M. Xiao, and J. Shao, “Game theory-based
anti-jamming strategies for frequency hopping wireless communications,”
IEEE Transactions on Wireless Communications, vol. 17, no. 8, pp.
5314-5326, 2018.

H. Quan, H. Zhao, and P. Cui, “Anti-jamming frequency hopping system
using multiple hopping patterns,” Wireless Personal Communications,
vol. 81, no. 3, pp. 1159-1176, 2015.

J. Zhang and X. Wu, “Rl-based frequency hopping with block-
shifted patterns: Balancing between anti-jamming performance and
synchronization overhead,” IEEE Transactions on Vehicular Technology,
2023.

M. Torquato, P. Maciel, and M. Vieira, “Analysis of vm migration
scheduling as moving target defense against insider attacks,” in
Proceedings of the 36th Annual ACM Symposium on Applied Computing,
2021, pp. 194-202.

——, “Evaluation of time-based virtual machine migration as moving
target defense against host-based attacks,” Journal of Systems and
Software, vol. 219, p. 112222, 2025.

A. Aydeger, P. Zhou, S. Hoque, M. Carvalho, and E. Zeydan, “Mtdns:
Moving target defense for resilient dns infrastructure,” arXiv preprint
arXiv:2410.02254, 2024.

M. Wright, S. Venkatesan, M. Albanese, and M. P. Wellman, “Moving
target defense against ddos attacks: An empirical game-theoretic
analysis,” in Proceedings of the 2016 ACM Workshop on Moving Target
Defense, 2016, pp. 93—-104.

Y. Zhou, G. Cheng, Y. Zhao, Z. Chen, and S. Jiang, “Toward proactive
and efficient DDoS mitigation in IToT systems: A moving target defense
approach,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4,
pp. 2734-2744, 2021.

T. Zhang, C. Xu, P. Zou, H. Tian, X. Kuang, S. Yang, L. Zhong, and
D. Niyato, “How to mitigate ddos intelligently in sd-iov: A moving
target defense approach,” IEEE Transactions on Industrial Informatics,
vol. 19, no. 1, pp. 1097-1106, 2022.

M. Nguyen and S. Debroy, “Moving target defense-based denial-of-
service mitigation in cloud environments: A survey,” Security and
Communication Networks, vol. 2022, no. 1, p. 2223050, 2022.

V. Heydari and S.-M. Yoo, “Securing critical infrastructure by moving
target defense,” in Proc. 11th Int. Conf. Cyber Warfare Secur.(ICCWS),
2016, pp. 382-390.

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks, 2012, pp. 127-132.

V. Casola, A. De Benedictis, C. Mazzocca, and R. Montanari, “Design-
ing secure and resilient cyber-physical systems: A model-based moving
target defense approach,” IEEE Transactions on Emerging Topics in
Computing, 2022.

Y.-B. Luo, B.-S. Wang, and G.-L. Cai, “Effectiveness of port hopping
as a moving target defense,” in 2014 7th International Conference on
Security Technology. 1EEE, 2014, pp. 7-10.

X. Xu, H. Hu, Y. Liu, H. Zhang, and D. Chang, “An adaptive ip hopping
approach for moving target defense using a light-weight cnn detector,”
Security and Communication Networks, vol. 2021, no. 1, p. 8848473,
2021.

V. Heydari, S.-i. Kim, and S.-M. Yoo, “Anti-censorship framework
using mobile ipv6 based moving target defense,” in Proceedings of
the 11th Annual Cyber and Information Security Research Conference,
2016, pp. 1-8.

——, “Scalable anti-censorship framework using moving target defense
for web servers,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 5, pp. 1113-1124, 2017.

A. K. Sood and S. Zeadally, “A taxonomy of domain-generation
algorithms,” IEEE Security & Privacy, vol. 14, no. 4, pp. 46-53, 2016.
Y. Fu, L. Yu, O. Hambolu, I. Ozcelik, B. Husain, J. Sun, K. Sapra,
D. Du, C. T. Beasley, and R. R. Brooks, “Stealthy domain generation
algorithms,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 6, pp. 1430-1443, 2017.

L. Nie, X. Shan, L. Zhao, and K. Li, “Pkdga: A partial knowledge-
based domain generation algorithm for botnets,” IEEE Transactions on
Information Forensics and Security, 2023.

S. Li, T. Huang, Z. Qin, F. Zhang, and Y. Chang, “Domain generation
algorithms detection through deep neural network and ensemble,” in

https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-over-tor
https://developers.cloudflare.com/1.1.1.1/other-ways-to-use-1.1.1.1/dns-over-tor
https://github.com/SadeghHayeri/GreenTunnel
https://github.com/SadeghHayeri/GreenTunnel

Companion Proceedings of The 2019 World Wide Web Conference,
2019, pp. 189-196.

H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga: Adversarially-
tuned domain generation and detection,” in Proceedings of the 2016
ACM workshop on artificial intelligence and security, 2016, pp. 13-21.
F5, Inc, “NGINX,” https://github.com/nginx/nginx, 2024.

Q. Huang, D. Chang, and Z. Li, “A comprehensive study of {DNS-
over—HTTPS} downgrade attack,” in 10th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 20), 2020.

S. Sridhar, O. Ascigil, N. Keizer, F. Genon, S. Pierre, Y. Psaras,
E. Riviere, and M. Krdl, “Content censorship in the interplanetary file
system.” Network and Distributed System Security (NDSS) Symposium
2024, 2024.

I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Comprehensive
survey of image steganography: Techniques, evaluations, and trends in
future research,” Neurocomputing, vol. 335, pp. 299-326, 2019.

N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, 1. Goldberg, and
M. Smith, “Sok: secure messaging,” in 2015 IEEE Symposium on
Security and Privacy. 1EEE, 2015, pp. 232-249.

K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, pp. 1914-1983, 2020.

P. Rosler, C. Mainka, and J. Schwenk, “More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE, 2018,
pp. 415-429.

E. Rodriguez, R. Anghel, S. Parkin, M. Van Eeten, and C. Gandn, “Two
sides of the shield: Understanding protective {DNS} adoption factors,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
3135-3152.

K. Jefdbek, K. Hynek, T. Cejka, and O. Rysavy, “Collection of datasets
with DNS over HTTPS traffic,” Data in Brief, vol. 42, p. 108310, 2022.
D. Chao, D. Xu, F. Gao, C. Zhang, W. Zhang, and L. Zhu, “A
Systematic Survey On Security in Anonymity Networks: Vulnerabilities,
Attacks, Defenses, and Formalization,” IEEE Communications Surveys
& Tutorials, 2024.

“Fast flux: A national security threat,” National Security Agency
(NSA), Cybersecurity and Infrastructure Security Agency (CISA),
Federal Bureau of Investigation (FBI), Australian Signals Directorate’s
Australian Cyber Security Centre (ASD’s ACSC), Canadian Centre for
Cyber Security (CCCS), New Zealand National Cyber Security Centre
(NCSC-NZ), Tech. Rep. U/O0/136180-25 — PP-25-1337, apr 2025,
cybersecurity Advisory. [Online]. Available: https://media.defense.gov/
2025/Apr/02/2003681172/-1/-1/0/CSA-FAST-FLUX.PDF

T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks.” in Ndss, 2008.

J. Nazario and T. Holz, “As the net churns: Fast-flux botnet observations,”
in 2008 3rd International Conference on Malicious and Unwanted
Software (MALWARE). 1EEE, 2008, pp. 24-31.

A. Caglayan, M. Toothaker, D. Drapeau, D. Burke, and G. Eaton, “Real-
time detection of fast flux service networks,” in 2009 Cybersecurity
Applications & Technology Conference for Homeland Security. 1EEE,
2009, pp. 285-292.

E. Pauley, P. Barford, and P. McDaniel, “DScope: A Cloud-Native
Internet Telescope,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 5989-6006.

E. Pauley, R. Sheatsley, B. Hoak, Q. Burke, Y. Beugin, and P. McDaniel,
“Measuring and mitigating the risk of ip reuse on public clouds,” in
2022 IEEE Symposium on Security and Privacy (SP). 1EEE, 2022,
pp. 558-575.

O. Demigha and R. Larguet, “Hardware-based solutions for trusted
cloud computing,” Computers & Security, vol. 103, p. 102117, 2021.

[90]

[91]
[92]

[93]

[94]
[95]
[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

APPENDIX A
INTERSECTION WITH FAST FLUX AND IMPLICATIONS

In April 2025, the NSA and other national cybersecurity
agencies issued a bulletin highlighting “Fast Flux” as a
national security threat [101]. Fast Flux, both its single-
flux and double-flux variants, relies on rapidly changing
DNS records to evade blacklists and takedowns [[102], [[103]].
Malicious operators leverage extensive pools of compromised

devices or bulletproof hosting to rotate the IP addresses
(and sometimes the nameservers) of phishing sites, command-
and-control (C2) infrastructure, and ransomware portals. By
continuously shifting the network-level routing of malicious
services, Fast Flux raises significant barriers to law enforcement
and intelligence efforts.

Below, we examine where NinjaDoH intersects with these
recent, national-level efforts, whether it could face collateral
harm from new detection and blocking heuristics, and how
NinjaDoH’s design mitigates such risks.

A. Background on Fast Flux Defense

The recent guidance from the NSA and allied agencies calls
for more specific detection mechanisms to identify malicious
Fast Flux. Some of the common recommended methods include,
but are not limited to, the following:

o Short time-to-live (TTL) detection. Spotting extremely low
DNS TTLs, often near zero, used by malicious Fast Flux
domains.

e DNS or IP reputation filtering. Blocking newly registered
domains or domains with suspicious rotation footprints.

« Network-level blocking of suspicious nameservers. Prevent-
ing rapid reassignments of authoritative DNS servers when
they persistently resolve malicious domains.

« Protective DNS (PDNS) solutions. Encouraging ISPs and
large organizations to adopt PDNS and reputation systems
that automate the blocking of suspicious domains or address
ranges.

Because NinjaDoH also uses frequent IP rotation (via
public cloud elastic IPs) to bypass static blocklists, a natural
question arises whether national-level efforts to crackdown
on Fast Flux networks might inadvertently detect or block
NinjaDoH endpoints.

B. Similarities and Key Differences

NinjaDoH’s moving-target design superficially resembles
single-flux rotation: a DoH server with frequently changing IP
addresses. However, unlike malicious botnets, NinjaDoH does
not rely on bulletproof hosts or compromised machines. Instead,
it leverages legitimate hyperscaler IP pools. Now, that does not
mean that all the addresses are always perfectly “clean,” but the
cloud providers do have know-your-customer (KYC) policies
and dutifully cooperate with law enforcement, giving their
addresses a certain degree of positive reputation. Furthermore,
NinjaDoH does not broadcast short DNS TTLs into the global
DNS system, as it does not rely on domain-based lookups
from external resolvers. Rather, it privately informs clients of
IP changes via IPNS content addressing. Below, we outline
the core differences:

Infrastructure Source. Malicious fast flux actors typically
operate large botnets or partner with bulletproof hosting
services that ignore abuse requests. Such infrastructure is
often spread across multiple ASes to thwart takedowns. By
contrast, NinjaDoH runs on reputable hyperscalers (e.g., AWS
or GCP). These platforms have finite IPv4 pools that they
actively manage and monitor, thereby reducing the likelihood

13

https://github.com/nginx/nginx
https://media.defense.gov/2025/Apr/02/2003681172/-1/-1/0/CSA-FAST-FLUX.PDF
https://media.defense.gov/2025/Apr/02/2003681172/-1/-1/0/CSA-FAST-FLUX.PDF

of hosting overtly malicious or legally noncompliant activities.
Although an adversary could still attempt to block entire IP
ranges from these providers, the significant collateral damage
makes such actions impractical in most network applications.

Motivation and Enrollment. Traditional fast flux operations
aim to prolong uptime for phishing sites, ransomware distribu-
tion, and other illicit content by evading IP-based blocks and
takedowns. Attackers compromise machines or subvert hosting
specifically to hide their true infrastructure. In NinjaDoH, the
motivation is censorship-resilience: providing users with a
rotating DoH endpoint for legitimate DNS resolution. Clients
voluntarily enroll by obtaining the private IPNS key out-of-
band; there are no “victim hosts.” This user-driven enrollment
model sharply contrasts with malicious botnets.

Scale and Behavior. Fast flux botnets commonly involve
hundreds or thousands of rotating IPs, each with very short
TTLs, often near zero, to ensure that addresses change with
nearly every query. Because they frequently bulk-register
disposable domains or use “throwaway” TLDs, their DNS
patterns appear erratic at scale. NinjaDoH, on the other hand,
allocates just a handful of cloud IPs at a configurable rotation
interval. Rather than issuing DNS queries for new domains, it
updates its clients via IPNS content addressing. As a result, an
external observer does not see a large global flux event, but
rather a moderate, private address shift, closer to normal cloud
elasticity or load balancing. Consequently, NinjaDoH’s usage
profile rarely appears suspicious to standard threat intelligence
or DNS reputation systems, which predominantly look for mass
domain churn or broad bulletproof hosting anomalies.

C. Potential for Collateral Blocking

Reputation-based blocking of rotating IPs. If security
providers or national agencies adopt broad rules that flag
any rapidly rotating IP endpoints, NinjaDoH could risk false
positives. However, collateral damage concerns generally deter
large-scale cloud IP blocks because hyperscalers host numerous
legitimate services. Blocking entire address pools to catch
ephemeral usage often proves unacceptable, especially in
critical infrastructure or corporate settings where legitimate
cloud-based applications would break.

Agencies have urged providers to expand DNS reputation
analytics, but NinjaDoH avoids typical Fast Flux markers such
as newly registered domains or unknown TLDs. Since clients
do not publicly query a domain to reach NinjaDoH , rather they
connect to ephemeral IP addresses discovered through IPFS,
standard PDNS-based flux detection is largely circumvented.

Strict enterprise environments. Enterprises might still rely
on policy-driven security solutions that block unrecognized
outbound traffic. An organization with rigid outbound policies
or endpoint device protection may block NinjaDoH. In ex-
tremely locked-down contexts (IP allowlists only), censorship-
resistant tools face their toughest regime. Nonetheless, these
environments are not the norm for national-level ISPs unless
they are willing to accept heavy collateral disruptions.

14

D. Implications for Other Censorship-Resistant Tools

Unintended Consequences for Legitimate MTD Archi-
tectures. A central question is whether a robust push to
block malicious fast flux might inadvertently compromise
legitimate MTD solutions like NinjaDoH, NetShuffle [5]], or
rotating domain-fronting proxies. If an ISP or national regulator
enforces broad “suspicious IP churn” detection, potentially
guided by large-scale ML classifiers or fixed thresholds for
what constitutes “excessive” rotation, legitimate ephemeral
endpoints may be flagged.

However, such blanket approaches at the ISP level are rarely
feasible. Hyperscalers host a vast array of critical services, so
blocking these IP ranges outright can disrupt essential cloud-
based applications. Consequently, censors or large enterprises
typically adopt more granular strategies. In practice, the brunt
of “Fast Flux” defenses tends to fall on suspicious or newly
registered domains, identifying bulletproof hosting providers,
or blocking known malicious IP clusters.

Collateral Damage vs. Granular Policy. While national
agencies encourage precision detection of malicious flux
domains and IP footprints [101]], some PDNS solutions may
overreach by automatically classifying any ephemeral address
rotation as malicious. The result is that legitimate usage, from
autoscaling backends in DevOps environments to censorship-
resistant DNS, could face unwarranted blocks or false positives.

In practice, commercial PDNS and public resolvers still
emphasize domain reputation rather than wholesale ephemeral
IP blocking [104]. NinjaDoH largely sidesteps typical red flags
by avoiding standard domain resolution altogether. Because its
IP rotation stays within reputable cloud allocations and does
not manifest as public DNS TTL churn, the resulting footprint
is far less conspicuous than that of malicious flux networks.

Serving as an Anchor for Other Anti-Censorship Tech-
niques. A positive corollary of NinjaDoH’s resilience is its
utility as a bootstrap mechanism for additional censorship-
resistance protocols. NetShuffle |3, certain pluggable transports,
or domain-fronting methods often require an unblocked DNS
channel to retrieve ephemeral entry points. NinjaDoH provides
such a channel: once users have a stable, moving-target DoH
resolver, they can securely learn or update addresses for
advanced proxying or shuffle-based systems. By layering these
techniques, the overall censorship-circumvention pipeline gains
robustness.

Leveraging Fast Flux Guidance for Stealth. Interestingly,
official recommendations for detecting criminal Fast Flux yield
valuable lessons for NinjaDoH deployments:

+ Moderate Rotation Intervals. Avoid overly aggressive churn
(e.g., changing IPs every few seconds) that mimics large-scale
botnets. A balanced, periodic rotation reduces detectability.

« Legitimate IP Blocks. Hosting on major cloud platforms
dissuades broad IP blocking and leverages existing positive
reputation pools.

« Normal Handshake Patterns. Matching common load-
balancer behavior or autoscaling signals helps blend in with
the “background” cloud environment.

By adhering to these recommendations originally aimed at
uncovering malicious bulletproof hosting, NinjaDoH further
reduces its risk of false positives and collateral blocking.

E. Summary of Expected Impact

While both NinjaDoH and malicious Fast Flux techniques
utilize frequent IP rotation to evade static blocklists, their
underlying motivations and architectures differ substantially,
raising important questions about the governance of censorship-
resistant technologies amid increasing scrutiny of evasive
network behaviors. Whereas Fast Flux relies on suspiciously
short TTLs, throwaway domains, and bulletproof hosting,
NinjaDoH leverages reputable cloud infrastructure and private
IPNS-based coordination. Although enterprises or authoritarian
regimes might adopt broad heuristics that flag ephemeral IP
usage, the collateral risk of blocking major cloud platforms
makes such measures impractical at scale. NinjaDoH’s archi-
tecture can also serve as a foundation for other censorship-
resistance tools (e.g., NetShuffle or domain-fronted proxies)
by offering a stealthy DNS bootstrap path. Like many MTD
systems, however, NinjaDoH illustrates the dual-use tension
between circumventing censorship and complicating enterprise
security controls. As ephemeral MTD strategies become more
widespread, future research must continue to consider how to
balance anti-censorship resilience with responsible network
governance. For now, NinjaDoH’s operational profile positions
it outside the primary scope of Fast Flux countermeasures.

APPENDIX B
ADDITIONAL SECURITY ANALYSIS

We now analyze additional security considerations that are
relevant for our proposed system.

IPv4 Reuse and Short-term Tenancy. Although the global
IPv4 address pool of hyperscalers is incredibly large, by
constantly rotating IPv4 addresses there exists the possibility
that IP addresses are recycled and reused. There could be
unintended consequences of using transitory IP addresses,
and service could be denied if an in-use IP address was
previously blocked by a network administrator because of
the prior tenant of that address. IP reuse on public clouds is
an area of active research, as Pauley et al. show [105], [106],
cloud IPs receive significantly more targeting scanning than
what is expected under normal conditions. This can be caused
by misconfigurations of prior tenants, or that cloud IPs appear
as more lucrative targets. This should have minimal affect on
our system because of the transitory nature of our tenancy on
any given IP address.

Let’s assume an adversary gains access to the IPNS hash
allowing them to know the IP addresses and follow along with
the IP rotations of a particular NinjaDoH deployment. This
would allow them to add those IP addresses to their blocklist.
While this would deny use of that deployment, it would cause
downstream negative effects on legitimate services that become
tenants of those IP addresses. This negative effect on the
censor would be compounded as the number of individual
NinjaDoH deployments they block by using a compromised

15

IPNS hash. This furthers the case against append-only, list-
based approaches to blocking DoH. Additionally, to restore
service, the NinjaDoH deployer would rotate their IPNS hash
and securely communicate the hash rotation with their clients.

IPv6 Subnet Blocking. As IPv6 is orders of magnitude larger
an address space than IPv4, with no real risk of exhaustion,
list-based approaches for IP addresses blocking are not possible.
However, that doesn’t mean that censors can’t take advantage
of certain administrative realities present in how IPv6 subnets
are allocated to users. The smallest allocation to an individual
entity is /64. Therefore, if a censor detects NinjaDoH on IPv6,
they could choose to block the entire /64 subnet associated
with that IP. This would largely come down to a specific
deployment consideration on how the public cloud provider
will allocate IPv6 subnets to users.

Trusted Execution Environments (TEE). A sophisticated
adversary who gains root access to the server instance providing
the service would have the ability to either deny service by
terminating the process, or most insidiously, conduct a DNS
poisoning attack by hijacking the DNS resolver located on the
instance. If the infrastructure serving the NinjaDoH service is
compromised, we want to limit the adversary to, at most, a
denial of service. We can maintain the integrity of the system
and preserve the privacy of the DNS requests of the client
by placing key cryptographic functions of the system inside
a trusted execution environment. The large hyperscale public
cloud providers allow for secure compute enclaves on their
compute instances, which Demigha et al. [107] show can
provide secure storage as well as protection from an OS-level
compromise. The TEE in the cloud environment can hold the
private key for the TLS session, as well as the private key for
the IPNS name. Properly implementing this would ensure that
even if the adversary gains root access on the host compute
instance, they would not be able to manipulate the code, or
access the private keys stored inside the TEE, maintaining the
integrity of the service.

APPENDIX C
ADDITIONAL TABLES & FIGURES

1.0
0.8
$ 0.6
0.4 7z
% 2 Bz 7 %
n % 2 8. 7% 067 %
, Y Y% % M7% 087% 087 %
o2 Ng7g W77 M7% W79 W77
Precision Recall F1 w4 NinjaDoH
' LSTM Dense CNN Hybrid XGBoost
Models

Fig. 5: Performance of ML models trained with DoH traffic in
detecting test DoH vs. NinjaDoH traffic, showing that while
regular DoH is accurately detected, NinjaDoH’s dynamic IP
rotation and query path randomization make detection far more
challenging.

TABLE I: Evasion of DoH blocking by popular firewalls.

DoH Blocking

Method Layer Evaded | Adversarial Impact Explanation
Low-cost to implement and maintain as
it relies on simple static blocklists. Does not use a domain name so bypasses
Domain Blocking Network (3) v Minimal impact on the network and static domain blocklists yP
does not significantly degrade user)
experience.
Low-cost to implement and maintain as
it relies on simple static blocklists. e
IP Blocking Network (3) v Minimal impact on the network and The IP address agility of the system
d P evades static IP blocklist.
oes not significantly degrade user
experience.
Moderate cost and complexity as it
Application requires deep packet inspection. It can Mimics regular HTTPS traffic to evade
I dg)lﬁiﬁcation Application (7) v introduce slight latency but is more application-level filters. Does not follow
effective than simple IP or domain the typical patterns of DoH traffic.
blocking.
Moderate cost with little impact on user | Since the client connects via an IP address,
SNI Blockin Session (5) v experience. More complex to maintain the SNI field in the ClientHellois
g with newer protocols like TLS 1.3, empty or omitted, preventing SNI-based
which makes SNI blocking harder. blocking from matching a domain name.
High cost and impact, as it restricts user
gﬁng:nstlii?flzﬁtelzaﬁi rsfqtl;ﬁ:fe d1p Uses strict [P allowlisting; unknown IPs
IP Allowlisting Network (3) X p S are blocked, so dynamic IPs are
addresses. This method limits user ineffective
capabilities and heavily controls the .
network environment.
1.0 TABLE II: Descriptive statistics for flow duration (in ms).
Flow Type | Mean | Median | Skew N
08 Non-DoH | 7430 313 | 3820 | 3395
" ; ? g NinjaDoH 742 246 4240 | 1606
0.6 g 7 4 ; Combined | 5280 265 | 4740 | 5001
@ 0.4 ’ ’ i % ' 7]
mininmminu
0.2 ! é ‘ é a g g é ﬁ g y A: 10000 A: 100000 A: 1000000 A: 10000000
W Precision Recall F1 w4 NinjaDoH -
LSTM Dense CNN Hybrid XGBoost “o. - ———
Models 30 ’ ﬁ /—
Fig. 6: Performance of ML models trained with DoH and 00
NinjaDoH traffic in detecting test DoH vs. NinjaDoH traffic. 10
g
~05 » [p— [———
& / / J—
0.0
1.0
g
o e e N S L e |
Censored :50'5 /
DNS Server o -
1.0
NinjaDoH ¢ NinjaDoH Client § I R R N A N N
Server Edge DNS =0 / J
"n.
/ \ \ 0.0 ——
s 24 29 24 29 24 29 24 29
Outside i Nproc Nproc Nproc Nproc
VN C d . . .
Ez:;z:zd l‘\elva(\)/Lerk Fig. 8: Relationship between the number of cores (Npc),

Fig. 7: NinjaDoH client deployed as a scalable edge DNS
resolver inside a censored network.

flows/min ()), and flow processing time (7},) on the probability
of detecting DoH. The dashed line represents the best ML
model’s true positive rate baseline (TPR=0.52).

Be:

Connection Information

(NS URL when you create a post nthe

Debug Information

Connected to 1.1.1.1 ves

ing DNS over HTTPS (DoH)

Using DNS over TLS (DoT) No

Using DNS over WARP. No

v
T
¥
o
8
-
B

AS Name Cloudflare
AS Number 13335
Cloudflare Data Center Ml

Connectivity to Resolver IP Addresses

Fig. 9: Prototype NinjaDoH client (left window) running on
Ubuntu Desktop, using a NinjaDoH server instance on AWS for
DNS queries. DoH connectivity to NinjaDoH server is verified
by https://one.one.one.one/help/ opened on a web browser
(right window). Cloudflare is configured as the upstream DNS
server on this instance of NinjaDoH server, as verified in the
highlighted box.

17

https://one.one.one.one/help/

	Introduction
	Background and Related Work
	Adversary Model
	NinjaDoH System Model
	System Requirements
	The Server
	The Client

	Evaluation
	Baselining Latency
	List-based Firewall Evasion
	Machine Learning Evasion
	Adaptive Adversary Evasion
	Scalability of Adversarial ML-based Detection
	Costs to Deploy & Integrate

	Discussion and Future Work
	Conclusion
	References
	Appendix A: Intersection with Fast Flux and Implications
	Background on Fast Flux Defense
	Similarities and Key Differences
	Potential for Collateral Blocking
	Implications for Other Censorship-Resistant Tools
	Summary of Expected Impact

	Appendix B: Additional Security Analysis
	Appendix C: Additional Tables & Figures

